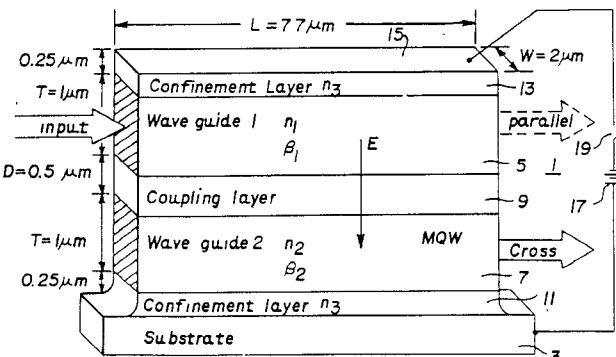


Patent Abstracts

These Patent Abstracts of recently issued patents are intended to provide the minimum information necessary for readers to determine if they are interested in examining the patent in more detail. Complete copies of patents are available for a small fee by writing: U.S. Patent and Trademark Office, Box 9, Washington, D.C. 20231.

4,923,264


May 8, 1990

Resonance Coupled Optical Coupler with Semiconductor Waveguide Layer Comprising a Multi-Quantum-Well Structure

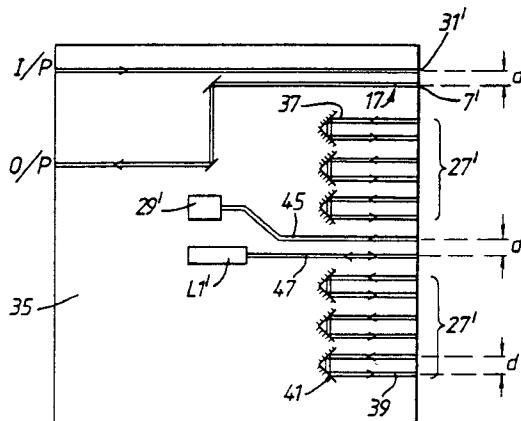
Inventors: Dietrich W. Langer and Marek Chmielowski.
 Assignee: University of Pittsburgh of the Commonwealth System of Higher Education.
 Filed: Jan. 18, 1989.

Abstract—An electro-optical coupler made of consecutively deposited layers of semiconductor material has a one waveguide layer a multiple-quantum-well structure which exhibits a strong index of refraction dispersion in response to an electric field. Another waveguide layer separated from the multiple-quantum-well structure by a coupling layer is made of a bulk semiconductor material having an index of refraction that is comparatively unaffected by the electric field and which is substantially equal to one of the values of the index of refraction that the quantum well structure can assume. Resonant coupling of the waveguide layers is affected by a uniform electric field generated by a voltage applied between metalization on a confinement layer covering the top waveguide and a substrate on which the waveguide layers and coupling layer are grown over a lower confinement layer. When the indexes of refraction of the two waveguides are equal, light injected into one waveguide is switched to the other. On the other hand, when the indices of refraction of the two waveguides are not equal, a parallel propagation condition exists. The coupler can be used either as a switch or an attenuator.

20 Claims, 5 Drawing Sheets

4,923,270

May 8, 1990

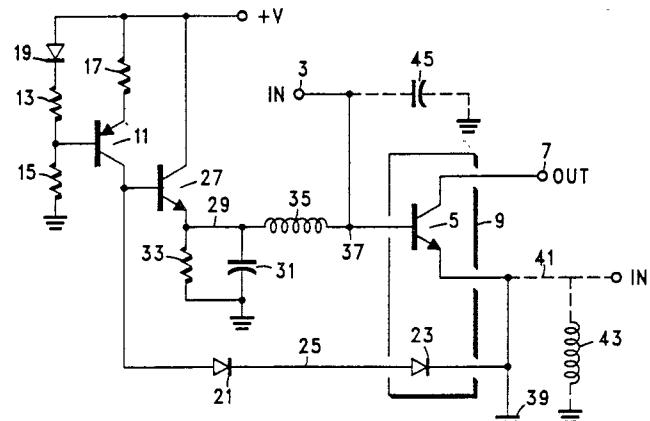

Apparatus for Optical Wavelength Division Multiplexing

Inventor: Andrew C. Carter.
 Assignee: Plessey Overseas Limited.
 Filed: Mar. 11, 1988.

Abstract—Apparatus of the type comprising an optical assembly and reflecting grating—for collimating light emitted by a laser and for refo-

cusing the same onto an output waveguide. The waveguide is modified to enhance reflection of the refocussed light, which in turn dominates the resonant response of the laser. Laser resonance thus depends on geometrical factors—the relative positions of laser and waveguide and the dispersion properties of the assembly. Wavelength selectivity is improved by confining reflection to the core of the waveguide e.g., by using an embedded reflector, or further still by using an etalon pair. The laser may be used in conjunction with other lasers and/or detectors, or with retroreflectors. A multilaser input multiplexer and single channel drop-and-add devices are described.

23 Claims, 3 Drawing Sheets

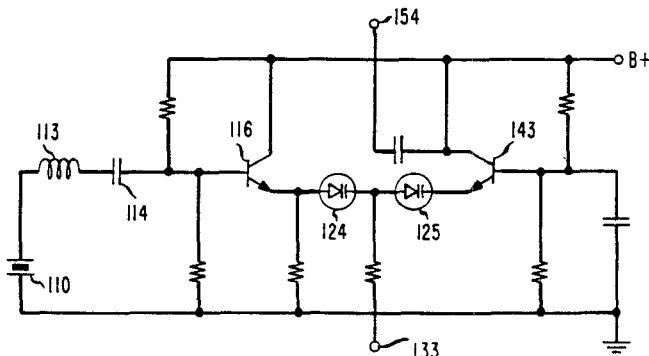

May 8, 1990

RF Power Amplifier

Inventors: George F. Opas and Edward C. Porrett.
 Assignee: Motorola, Inc.
 Filed: May 19, 1989.

Abstract—An improved RF power amplifier is disclosed whereby a PIN-type diode is utilized to provide temperature tracking for the bias supply. The PIN diode provides proper temperature tracking with the bias supply while exhibiting reduced sensitivity to self-rectification. As a result, the power amplifier's bias supply is more stable and less susceptible to inaccuracies, distortion, and oscillation that may be caused by self-rectification in the presence of high RF fields, especially at UHF and 800 MHz.

21 Claims, 1 Drawing Sheet


4,924,195

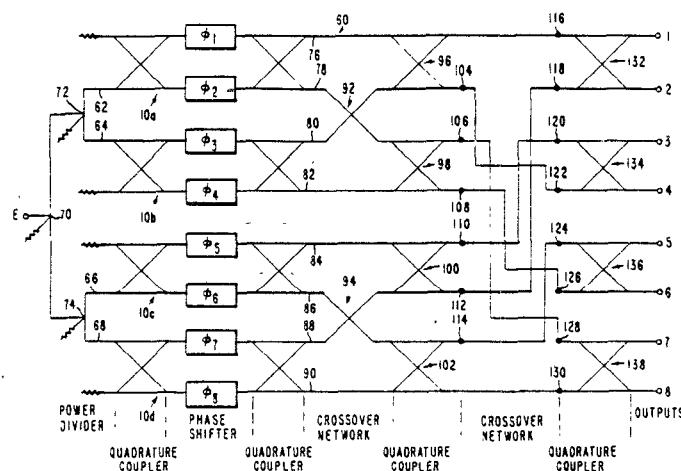
May 8, 1990

Crystal Oscillator with Broad Tuning Capability

Inventor: Joseph Gonda.
 Assignee: AT&T Bell Laboratories.
 Filed: June 19, 1989.

Abstract—A first transistor is connected in grounded-collector-emitter-follower configuration to generate a high enough negative resistance to overcome the oscillating resistance of the crystal resonator connected to the base electrode. A second transistor connected in grounded-base configuration serves as a buffer and impedance transformer between the low impedance output of the first transistor and the high impedance of a load. An inductor connected between the resonator and the first transistor input and a variable capacitance approximating the shunt capacitance of the resonator connected across the first transistor input form an impedance inverter that absorbs the resonator shunt capacitance and converts the effect of the resonator to a parallel tuned circuit that can be broadly tuned.

10 Claims, 2 Drawing Sheets


4,924,196

May 8, 1990

Waveguide Matrix Switch

Inventor: Harold A. Uyeda.
 Filed: Hughes Aircraft Company.
 Filed: Dec. 14, 1988.

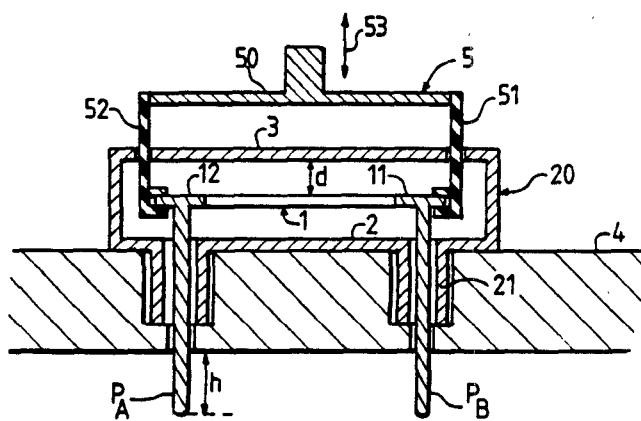
Abstract—The invention is a low loss multiple pole multiple throw microwave switch having a transmission line for each of a plurality of outputs. A phase shifting device is provided in each transmission line operable between first and second states to shift the phase of a microwave signal transmitted therethrough. A matrix of signal dividers and cross-over networks cooperate with the phase shifting devices to produce additive and subtractive vertical signal components such that all of the components at one output are additive and the signal components at all the other outputs have a vector sum of zero.

17 Claims, 2 Drawing Sheets

4,928,077

May 22, 1990

Tunable Microwave Coupler with Mechanically Adjustable Conductors


Inventors: Francois Devaux, Norbert Heral, Denis Lefevre, and Jean-Pierre Lehude.

Assignee: Thomson-CSF.

Filed: Aug. 23, 1988.

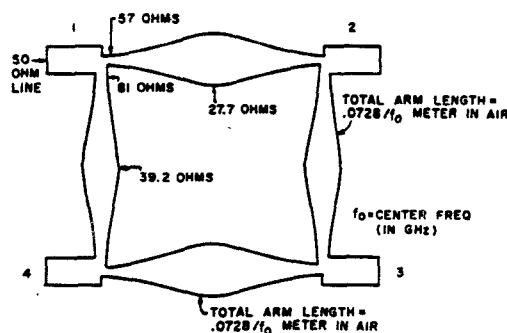
Abstract—Disclosed is a three-plate type coupler providing for the partial tapping, by means of plungers, of a microwave energy which is propagated in a guide. The coupler has mechanical means to vary the height of the central conductor of the three-plate structure at the level at which the plungers are fixed, thus causing a variation in the penetration of the plungers in the waveguide and, consequently, a variation in the coupling.

3 Claims, 2 Drawing Sheets

4,928,078

May 22, 1990

Branch Line Coupler


Inventor: Chandra Khandavalli.

Assignee: Avantek, Inc.

Filed: Dec. 22, 1988.

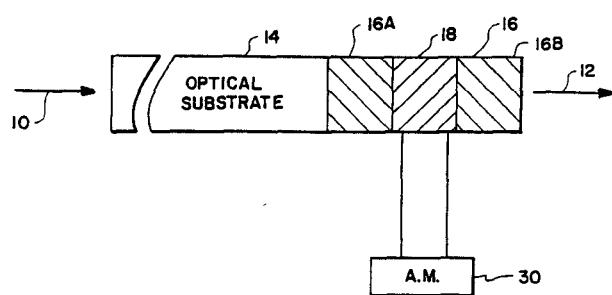
Abstract—A branch line coupler is disclosed. The device is comprised of multiple ports and branch lines, every two such lines being connected in a junction point. Each branch line has a width which is narrow at each end and increases in a curvilinear manner toward the middle. By virtue of the width design, the device performs the same functions as a conventional coupler, but for much higher frequencies.

8 Claims, 7 Drawing Sheets

4,929,063

May 29, 1990

Nonlinear Tunable Optical Bandpass Filter


Inventors: William W. Durand and Ronald E. Peterson.

Assignee: Honeywell Inc.

Filed: Jan. 22, 1986.

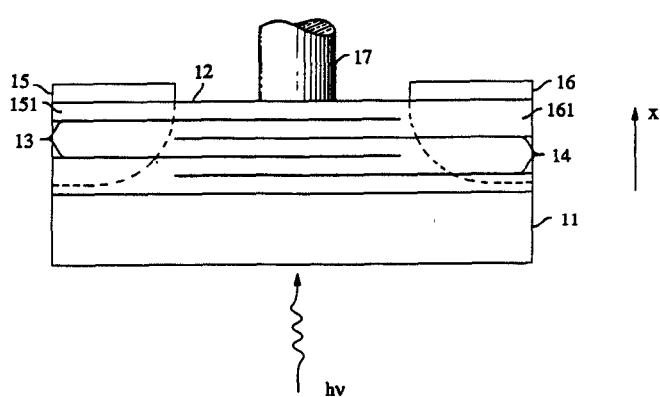
Abstract—A nonlinear tunable optical bandpass filter of the Fabry-Perot type is disclosed comprising an optically transparent substrate and a plurality of multilayer coatings deposited on a facing side of the substrate. One of the coating layers comprises a spacer being a nonlinear optical coating material having an externally-variable refractive index. The spacer is bounded on two ends by structures of multilayer stacks being alternating thin films of transparent, physically compatible materials. The filter of the invention can be tuned to pass various transmittance wavelengths through the application of external activation apparatus, such as heating by a laser acting on the spacer.

3 Claims, 1 Drawing Sheet

4,929,064

May 29, 1990

Optical Communications Modulator Device

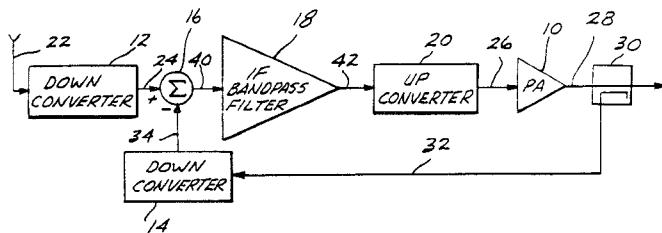

Inventor: Erdmann F. Schubert.

Assignee: American Telephone and Telegraph Company.

Filed: July 21, 1988.

Abstract—Electromagnetic radiation is modulated in response to an electrical signal that produces a variable electric field in a semiconductor δ -doped structure. A resulting device has a desirably broad wavelength range in which light intensity can be modulated, large contrast ratio between transparent and opaque states, small operating voltage, and high-speed capability as desirable in optical communications applications.

10 Claims, 2 Drawing Sheets


4,929,906

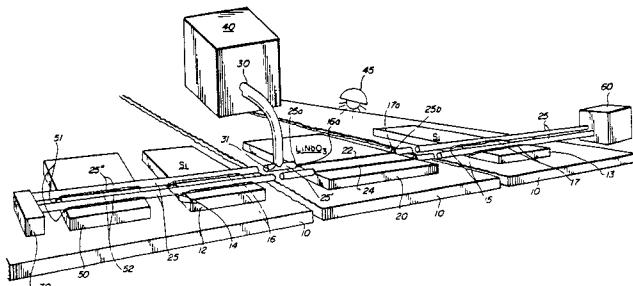
May 29, 1990

Amplifier Linearization Using Down/Up Conversion

Inventors: Kenneth G. Voyce and Jay H. McCandless.
 Assignee: The Boeing Company.
 Filed: Jan. 23, 1989.

Abstract—A feedback linearization technique for a power amplifier that does not require the availability of the modulation signals. The RF input signal is down converted to a first IF signal. A portion of the amplifier RF output signal is used to form a feedback signal that is down converted to produce a second IF signal that is subtracted from the first IF signal to produce a different signal. The difference signal is filtered and amplified, and then up converted to RF for input to the power amplifier. Use of feedback at IF avoids stability problems inherent in RF feedback techniques.

13 Claims, 4 Drawing Sheets


4,930,854

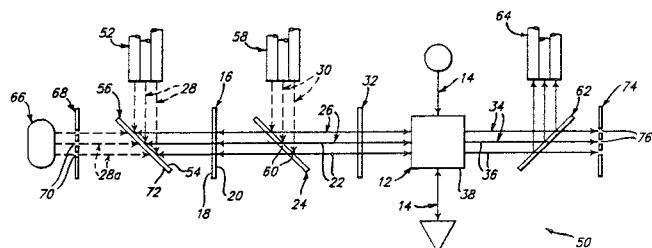
June 5, 1990

Optical Fiber-to-Channel Waveguide Coupler

Inventors: Donald J. Albares, David B. Cavanaugh, and Thomas W. Trask.
 Assignee: The United States of America as represented by the Secretary of the Navy.
 Filed: Mar. 3, 1989.

Abstract—A micromanipulator and UV curing adhesive allows a precise end-on coupling of an optical fiber to a film optical waveguide on a substrate. Such a coupling facilitates the optical processing of data on active or passive optoelectronic chips with the inherent advantages of parallel, high speed capability. After coarse alignment by suitably arranging the chips, each fiber is cemented into an etched V-groove in its Si chip with a UV curing adhesive for coarse positioning and mechanical support a few millimeters away from the waveguide chip. A precision fine alignment of each fiber is assured by the micromanipulator which displaces a hypodermic needle-like chuck to align the fiber with the waveguide. The fiber is finally cemented in place by the curing of a small amount of the UV curable adhesive that is coated on its end.

12 Claims, 3 Drawing Sheets


4,930,873

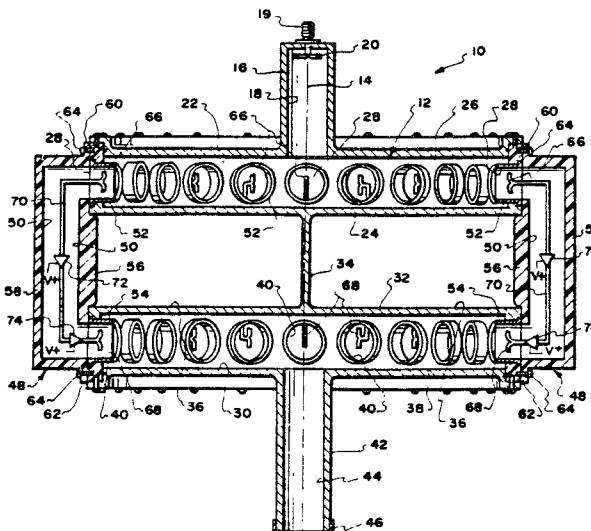
June 5, 1990

Optical Flip-Flop

Inventor: Bryan D. Hunter.
 Filed: Sept. 23, 1988.

Abstract—An optical flip-flop comprises a phase-conjugating mirror; a one-way mirror having its reflective side facing the phase-conjugating mirror; a “set” light pulse directed towards the phase-conjugating mirror through the transmissive side of the one-way mirror for initiating a reference light beam which thereafter reflects continuously along an auto-collimating path between the mirrors; a normally transmissive optical gate along the path of the reference beam which is rendered nontransmissive relative thereto upon interaction with a “reset” light pulse; a plurality of filters positioned between the mirrors to prevent the self-starting of the reference beam therebetween; and means for deriving an output signal from the reference beam. An optical logic device comprises a plurality of such flip-flops sharing a single set of mirrors, whereby increased system compactness and simplicity is achieved.

17 Claims, 1 Drawing Sheet


4,931,747

June 5, 1990

Microwave Power Amplifier

Inventor: Harvey K. Y. Hom.
 Assignee: Microwave Components and Systems, Inc.
 Filed: May 30, 1989.

Abstract—A microwave power amplifier which divides the microwave input signal into a plurality of equal segments with each segment being transmitted through a separate amplifying circuit. Each segment is then

supplied into a combiner chamber with these signals being recombined and being transmitted in the ambient through an outlet chamber. Incorporated with the amplifier are a plurality of sockets that are removably attached to the amplifier housing. Each socket is to connect between the signal divider chamber and the signal combiner chamber of the amplifier housing with each socket functioning to receive and amplify a signal.

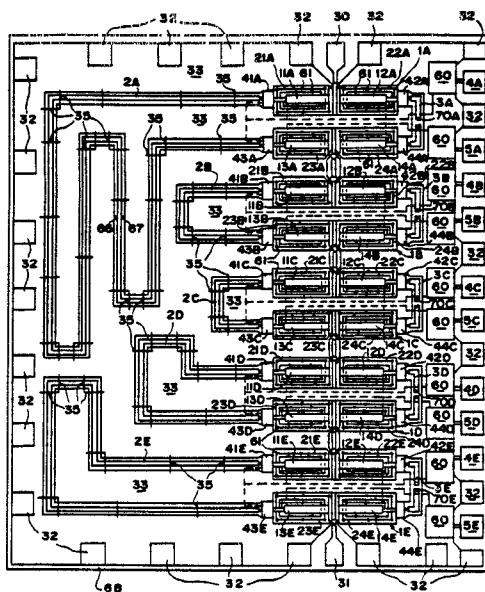
11 Claims, 1 Drawing Sheet

4,931,753

June 5, 1990

Coplanar Waveguide Time Delay Shifter

Inventors: William W. Nelson, Camille A. Lesko, Andrew M. Kennedy, II, and Vernon E. Dunn.


Assignee: Ford Aerospace Corporation.

Filed: Jan. 17, 1989.

Abstract—A time delay shifter imparts a constant time delay to an electromagnetic signal, preferably a signal at a microwave frequency, over a band of frequencies. The phase shift imparted to the signal is a linear function of frequency. The shifter comprises a finite number of delay units (1) each having four single-pole single-throw switches (11–14). Closure of the first and third switches (11, 13) causes the signal to traverse a first path (2) containing a preselected length of transmission line that imparts a fixed time delay to the signal. Closure of the second and fourth switches (12, 14) causes the signal to traverse a minimum-delay path (3) which is shorter than the delay path (2). The paths (2, 3) are fabricated of coplanar waveguide.

Each switch (11–14) is resonated by an indicator (21–24) for purposes of increasing isolation. An attenuator (70) is inserted in each minimum-delay path (3).

4 Claims, 4 Drawing Sheets

